2. de Bruijne M. Machine learning approaches in medical image analysis: from detection to diagnosis. Med Image Anal 2016;33:94–7.
6. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749–62.
7. van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 2011;261:719–32.
9. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–9.
10. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943;5:115–33.
11. Van Der Malsburg C. Frank Rosenblatt: principles of neurodynamics: perceptrons and the theory of brain mechanisms. In: Palm G, Aertsen A, editors. editors. Brain theory 1984 Oct 1-4; Trieste (IT): Springer Berlin Heidelberg; 1986. p. 245–8.
12. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Anderson JA, Rosenfeld E, editors. Neurocomputing: foundations of research. Cambridge (MA): MIT Press; 1988. p. 696–9.
13. Nasrabadi NM. Pattern recognition and machine learning. J Electron Imaging 2007;16:49901.
14. Kotsiantis SB. Supervised machine learning: a review of classification techniques. Informatica 2007;31:249–68.
15. Kuang D, Guo X, An X, Zhao Y, He L. Discrimination of ADHD based on fMRI data with deep belief network. In: Huang DS, Han K, Gromiha M, editors. editors. Intelligent computing in bioinformatics 2014 Aug 3-6; Taiyuan, CN. Cham (CH): Springer International Publishing; 2014. p. 225–32.
16. Kuang D, He L. Classification on ADHD with deep learning. Proceedings of the 2014 International Conference on Cloud Computing and Big Data (CCBD); 2014 Nov 12-14; Wuhan, CN. Washington, DC: IEEE Computer Society; 2014. p. 27–32.
18. Liu M, Zhang J, Adeli E, Shen D. Deep multi-task multichannel learning for joint classification and regression of brain status. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins DL, Duchesne S, editors. editors. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2017 2017 Sep 11-13; Quebec City, QC. Cham (CH): Springer International Publishing; 2017. p. 3–11.
19. Hagan MT, Demuth HB, Beale MH, De Jesus O. Neural network design. 2nd ed. Boston (MA): PWS Publishing; 2014.
20. Rosenblatt F. Report no. 85-460-1. The perceptron, a perceiving and recognizing automaton. Buffalo (NY): Cornell Aeronautical Laboratory; 1957.
21. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533–6.
22. Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng AY. On optimization methods for deep learning. In: Getoor L, Scheffer T, editors. Proceedings of the 28th International Conference on Machine Learning; 2011 Jun 28-Jul 2; Bellevue, WA. Madison (WI): Omnipress; 2011. p. 265–72.
23. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117.
24. Rumelhart DE, McClelland JL, University of California, San Diego, PDP Research Group. arallel distributed processing. Cambridge (MA): MIT press; 1986. p. 567.
26. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35:1798–828.
27. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proc Mach Learn Res 2010;9:249–56.
28. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. editors. Advances in Neural Information Processing Systems 25 (NIPS 2012) 2012 Dec 3-6; Lake Tahoe, NV. Red Hook (NY): Curran Associates Inc.; 2013. p. 1097–105.
29. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE Inst Electr Electron Eng 1998;86:2278–324.
30. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: IEEE Computer Society, editors. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015 Jun 7-12; Boston, MA. Los Alamitos (CA): IEEE Computer Society; 2015;1–9.
31. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations 2015; 2015 May 7-9; San Diego, CA: Computational and Biological Learning Society; 2015.
32. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016;2016:770–8.
33. Hinton GE, Zemel RS. Autoencoders, minimum description length and helmholtz free energy. In: Cowan JD, Tesauro G, Alspector J, editors. Advances in Neural Information Processing Systems 6 (NIPS 1993). 1993 Nov 29-Dec 2; Denver, CO. San Francisco (CA): Morgan Kaufmann Publishers Inc.; 1994. p. 3–10.
35. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Scholkopf B, Platt JC, Hofmann T, editors. Advances in Neural Information Processing Systems 19 (NIPS 2006). 2006 Dec 4-7; Vancouver, BC. Cambridge (MA): MIT Press; 2006. p. 153–60.
36. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371–408.
37. Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. In: International Machine Learning Society, editors. Proceedings of the 31st International Conference on International Conference on Machine Learning. Volume 32. 2014 Jun 21-26; Beijing, CN. Stroudsburg (PA): International Machine Learning Society; 2014. p. II-1764-72.
38. Graves A. Supervised sequence labelling. In: Graves A, editors. Supervised sequence labelling with recurrent neural networks. Berlin (DE): Springer Berlin Heidelberg; 2012. p. 5–13.
39. Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016;35:1182–95.
40. Zreik M, Lessmann N, van Hamersvelt RW, Wolterink JM, Voskuil M, Viergever MA, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal 2018;44:72–85.
41. Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated whole-body bone lesion detection for multiple myeloma on (68)Ga-pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol Imaging 2018;2018:2391925.
https://doi.org/10.1155/2018/2391925.
42. Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018;Jan 15 [Epub].
https://doi.org/10.1007/s10120-018-0793-2.
44. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, et al. BrainNetCNN: convolutional neural networks for brain networks: towards predicting neurodevelopment. Neuroimage 2017;146:1038–49.
45. Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 2018;287:146–55.
50. Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed 2017;138:49–56.
52. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 2018;286:887–96.
57. Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 2016;61:8676–98.
60. Tan LK, Liew YM, Lim E, McLaughlin RA. Cardiac left ventricle segmentation using convolutional neural network regression. In: IEEE Engineering in Medicine and Biology Society, editors. 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 2016 Dec 4-8; Kuala Lumpur, ML. Piscataway (NJ): IEEE; 2016. p. 490–3.
64. Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging 2016;35:1352–63.
65. Lv J, Yang M, Zhang J, Wang X. Respiratory motion correction for free-breathing 3D abdominal MRI using CNNbased image registration: a feasibility study. Br J Radiol 2018;91:20170788.
https://doi.org/10.1259/bjr.20170788.
68. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 2017;44:1408–19.
69. Roy S, Butman JA, Pham DL. Synthesizing CT from ultrashort echo-time MR images via convolutional neural networks. Tsaftaris SA, Gooya A, Frangi AF, Prince JL. Simulation and synthesis in medical imaging. Cham (CH): Springer International Publishing; 2017. p. 24–32.
70. Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35:1344–51.
71. Bahrami K, Rekik I, Shi F, Shen D. Joint reconstruction and segmentation of 7T-like MR images from 3T MRI based on cascaded convolutional neural networks. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins DL, Duchesne S, editors. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2017. 2017 Sep 11-13; Quebec City, QC. Cham (CH): Springer International Publishing; 2017. p. 764–72.
72. Xu C, Xu L, Gao Z, Zhao S, Zhang H, Zhang Y, et al. Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm. In: Descoteaux M, , Maier-Hein L, , Franz A, , Jannin P, , Collins DL, , Duchesne S, editors. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2017 2017 Sep 11-13; Quebec City, QC. Cham (CH): Springer International Publishing; 2017;240–9.
73. Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, et al. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab N, , Hornegger J, , Wells WM, , Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015 2015 Oct 5-9; Munich, DE. Cham (CH): Springer International Publishing; 2015;507–14.
75. Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng 2015;62:2693–701.
76. Xue W, Brahm G, Pandey S, Leung S, Li S. Full left ventricle quantification via deep multitask relationships learning. Med Image Anal 2018;43:54–65.
78. Yang X, Yu L, Wu L, Wang Y, Ni D, Qin J, et al. Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images. In: Singh S S, Markovitch S, editors. Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). 2017 Feb 4-9; San Francisco, CA. Palo Alto (CA): AAAI Press; 2017. p. 1633–9.
79. Qin C, Schlemper J, Caballero J, Price A, Hajnal JV, Rueckert D. Convolutional recurrent neural networks for dynamic MR image reconstruction [Internet]. Ithaca (NY): Cornell University; 2017 [cited 2018 Apr 23]. Available from:
https://arxiv.org/abs/1712.01751.
82. Chen M, Shi X, Zhang Y, Wu D, Guizani M. Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans Big Data 2017;Jun 20 [Epub].
https://doi.org/10.1109/TBDATA.2017.2717439.
86. Benou A, Veksler R, Friedman A, Riklin Raviv T. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal 2017;42:145–59.
88. The Theano Development Team, Al-Rfou R, Alain G, Almahairi A, Angermuller C, Bahdanau D, et al. Theano: a Python framework for fast computation of mathematical expressions [Internet]. Ithaca (NY): Cornell University; 2016 [cited 2018 Apr 23]. Available from:
https://arxiv.org/abs/1605.02688.
89. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In: Keeton K, Roscoe T, editors. OSDI’16 Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation. 2016 Nov 2-4; Savannah, GA. Berkeley (CA): USENIX Association; 2016. p. 265–83.
90. Collobert R, van der Maaten L, Joulin A. Torchnet: an open-source platform for (deep) learning research. In: Balcan MF, Weinberger KQ, editors. Proceedings of the 33rd International Conference on Machine Learning (ICML-2016). 2016 Jun 19-24; New York, NY. Stroudburg (PA): International Machine Learning Society; 2016. p. 19–24.
93. Qayyum A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017;266:8–20.
94. Sun Q, Yang Y, Sun J, Yang Z, Zhang J. Using deep learning for content-based medical image retrieval. In: Cook TS, Zhang J, editors. Medical imaging 2017: imaging informatics for healthcare, research, and applications. 2017 Feb 11-16; Orlando, FL. Bellingham (WA): SPIE; 2017. p. 1013811. –2.
https://doi.org/10.1117/12.2251115.
95. Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20–3.
96. Rodvold DM, McLeod DG, Brandt JM, Snow PB, Murphy GP. Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate 2001;46:39–44.
97. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 2004;233:793–8.
99. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. In: Krishnapuram B, editors. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016 Aug 13-17; San Francisco, CA. New York (NY): Association for Computing Machinery; 2016. p. 1135–44.
100. Hohman F, Kahng M, Pienta R, Chau DH. Visual analytics in deep learning: an interrogative survey for the next frontiers [Internet]. Ithaca (NY): Cornell University; 2018 [cited 2018 Apr 23]. Available from:
https://arxiv.org/abs/1801.06889.
101. Zhang Q, Zhu S. Visual interpretability for deep learning: a survey. Front Inf Technol Electron Eng 2018;19:27–39.
102. Liu X, Wang X, Matwin S. Interpretable deep convolutional neural networks via meta-learning [Internet]. Ithaca (NY): Cornell University; 2018 [cited 2018 Apr 23]. Available from:
https://arxiv.org/abs/1802.00560.
103. Domhan T, Springenberg JT, Hutter F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Yang Q, Wooldridge MJ, editors. Proceedings of the 24th International Conference on Artificial Intelligence. 2015 Jul 25-31; Buenos Aires, AR. Palo Alto (CA): AAAI Press; 2015. p. 3460–8.
104. Shen C, Gonzalez Y, Chen L, Jiang SB, Jia X. Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning [Internet]. Ithaca (NY): Cornell University; 2018 [cited 2018 Apr 23]. Available from:
https://arxiv.org/abs/1711.00414.