1. Stone M. Laboratory techniques for investigating speech articulation. Hardcastle WJ, Laver J, Gibbon F. The handbook of phonetic sciences. 2nd ed. Chichester (UK): Wiley-Blackwell; 2010. p. 9–38.
2. Hiiemae KM, Palmer JB. Tongue movements in feeding and speech. Crit Rev Oral Biol Med 2003;14:413–29.
3. Kezirian EJ, Hohenhorst W, de Vries N. Drug-induced sleep endoscopy: the VOTE classification. Eur Arch Otorhinolaryngol 2011;268:1233–6.
4. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 2007;12:051403.
6. Armstrong JJ, Leigh MS, Sampson DD, Walsh JH, Hillman DR, Eastwood PR. Quantitative upper airway imaging with anatomic optical coherence tomography. Am J Respir Crit Care Med 2006;173:226–33.
7. Lingala SG, Sutton BP, Miquel ME, Nayak KS. Recommendations for real-time speech MRI. J Magn Reson Imaging 2016;43:28–44.
8. Scott AD, Wylezinska M, Birch MJ, Miquel ME. Speech MRI: morphology and function. Phys Med 2014;30:604–18.
9. Bresch E, Kim YC, Nayak K, Byrd D, Narayanan S. Seeing speech: capturing vocal tract shaping using real-time magnetic resonance imaging [Exploratory DSP]. IEEE Signal Process Mag 2008;25:123–32.
10. Ramanarayanan V, Tilsen S, Proctor M, Toger J, Goldstein L, Nayak KS, et al. Analysis of speech production real-time MRI. Comput Speech Lang 2018;52:1–22.
11. Nayak KS, Fleck RJ. Seeing sleep: dynamic imaging of upper airway collapse and collapsibility in children. IEEE Pulse 2014;5:40–4.
12. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–62.
13. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–10.
14. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–95.
15. Uecker M, Zhang S, Voit D, Karaus A, Merboldt KD, Frahm J. Real-time MRI at a resolution of 20 ms. NMR Biomed 2010;23:986–94.
16. Kim YC, Loloyan S, Wu Z, Tran W, Kato R, Ward SLD, et al. Real-time MRI can differentiate sleep-related breathing disorders in children. 21st Annual ISMRM Scientific Meeting and Exhibition 2013; 2013 Apr 20-26; Salt Lake City, UT. p. 251.
17. Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397–406.
18. Niebergall A, Zhang S, Kunay E, Keydana G, Job M, Uecker M, et al. Real-time MRI of speaking at a resolution of 33 ms: undersampled radial FLASH with nonlinear inverse reconstruction. Magn Reson Med 2013;69:477–85.
19. Iltis PW, Frahm J, Voit D, Joseph AA, Schoonderwaldt E, Altenmuller E. High-speed real-time magnetic resonance imaging of fast tongue movements in elite horn players. Quant Imaging Med Surg 2015;5:374–81.
20. Nayak KS, Cunningham CH, Santos JM, Pauly JM. Real-time cardiac MRI at 3 tesla. Magn Reson Med 2004;51:655–60.
23. Barrera JE. Sleep magnetic resonance imaging: dynamic characteristics of the airway during sleep in obstructive sleep apnea syndrome. Laryngoscope 2011;121:1327–35.
24. Block KT, Frahm J. Spiral imaging: a critical appraisal. J Magn Reson Imaging 2005;21:657–68.
25. Sutton BP, Conway CA, Bae Y, Seethamraju R, Kuehn DP. Faster dynamic imaging of speech with field inhomogeneity corrected spiral fast low angle shot (FLASH) at 3 T. J Magn Reson Imaging 2010;32:1228–37.
26. Lim Y, Lingala SG, Toutios A, Narayanan S, Nayak SK. Improved depiction of tissue boundaries in vocal tract real-time MRI using automatic off-resonance correction. Interspeech 2016;2016:1765–9.
27. Lim Y, Lingala SG, Narayanan SS, Nayak KS. Dynamic off-resonance correction for spiral real-time MRI of speech. Magn Reson Med 2018;Jul 29 [Epub].
https://doi.org/10.1002/mrm.27373.
28. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68–76.
29. Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72:707–17.
30. Burdumy M, Traser L, Richter B, Echternach M, Korvink JG, Hennig J, et al. Acceleration of MRI of the vocal tract provides additional insight into articulator modifications. J Magn Reson Imaging 2015;42:925–35.
31. Lingala SG, Zhu Y, Kim YC, Toutios A, Narayanan S, Nayak KS. A fast and flexible MRI system for the study of dynamic vocal tract shaping. Magn Reson Med 2017;77:112–25.
32. Kim YC, Narayanan SS, Nayak KS. Flexible retrospective selection of temporal resolution in real-time speech MRI using a golden-ratio spiral view order. Magn Reson Med 2011;65:1365–71.
33. Scott AD, Boubertakh R, Birch MJ, Miquel ME. Adaptive averaging applied to dynamic imaging of the soft palate. Magn Reson Med 2013;70:865–74.
34. Parthasarathy V, Prince JL, Stone M, Murano EZ, Nessaiver M. Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing. J Acoust Soc Am 2007;121:491–504.
35. Stone M, Davis EP, Douglas AS, NessAiver M, Gullapalli R, Levine WS, et al. Modeling the motion of the internal tongue from tagged cine-MRI images. J Acoust Soc Am 2001;109:2974–82.
36. Fischer SE, McKinnon GC, Maier SE, Boesiger P. Improved myocardial tagging contrast. Magn Reson Med 1993;30:191–200.
37. Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 1989;172:349–50.
38. Kim YC, Proctor MI, Narayanan SS, Nayak KS. Improved imaging of lingual articulation using real-time multislice MRI. J Magn Reson Imaging 2012;35:943–8.
40. Shin LK, Holbrook AB, Capasso R, Kushida CA, Powell NB, Fischbein NJ, et al. Improved sleep MRI at 3 tesla in patients with obstructive sleep apnea. J Magn Reson Imaging 2013;38:1261–6.
41. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684–91.
42. Wu Z, Chen W, Khoo MC, Davidson Ward SL, Nayak KS. Evaluation of upper airway collapsibility using real-time MRI. J Magn Reson Imaging 2016;44:158–67.
43. Story BH, Titze IR, Hoffman EA. Vocal tract area functions from magnetic resonance imaging. J Acoust Soc Am 1996;100:537–54.
44. Narayanan SS, Alwan AA, Haker K. An articulatory study of fricative consonants using magnetic resonance imaging. J Acoust Soc Am 1995;98:1325–47.
47. Burdumy M, Traser L, Burk F, Richter B, Echternach M, Korvink JG, et al. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications. J Magn Reson Imaging 2017;46:94–101.
48. Wagshul ME, Sin S, Lipton ML, Shifteh K, Arens R. Novel retrospective, respiratory-gating method enables 3D, high resolution, dynamic imaging of the upper airway during tidal breathing. Magn Reson Med 2013;70:1580–90.
49. Kim YC, Lebel RM, Wu Z, Ward SL, Khoo MC, Nayak KS. Real-time 3D magnetic resonance imaging of the pharyngeal airway in sleep apnea. Magn Reson Med 2014;71:1501–10.
50. Zhu Y, Kim YC, Proctor MI, Narayanan SS, Nayak KS. Dynamic 3-D visualization of vocal tract shaping during speech. IEEE Trans Med Imaging 2013;32:838–48.
51. Fu M, Barlaz MS, Holtrop JL, Perry JL, Kuehn DP, Shosted RK, et al. High-frame-rate full-vocal-tract 3D dynamic speech imaging. Magn Reson Med 2017;77:1619–29.
52. Kim YC, Hayes CE, Narayanan SS, Nayak KS. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla. Magn Reson Med 2011;65:1711–7.
53. Narayanan S, Nayak K, Lee S, Sethy A, Byrd D. An approach to real-time magnetic resonance imaging for speech production. J Acoust Soc Am 2004;115:1771–6.
54. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 1991;10:473–8.
58. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 2018;79:3055–71.
59. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487–92.
62. Proctor MI, Bone D, Katsamanis A, Narayanan SS. Rapid semi-automatic segmentation of real-time magnetic resonance images for parametric vocal tract analysis. 11th Annual Conference of the International Speech Communication Association 2010; Sep 26-30; Chiba, JP. Red Hook (NY): Curran Associates, Inc.; 2010. p. 1576–9.
63. Labrunie M, Badin P, Voit D, Joseph AA, Frahm J, Lamalle L, et al. Automatic segmentation of speech articulators from real-time midsagittal MRI based on supervised learning. Speech Commun 2018;99:27–46.
64. Kim YC, Kim J, Proctor M, Toutios A, Nayak K, Lee S, et al. Toward automatic vocal tract area function estimation from accelerated three-dimensional magnetic resonance imaging. Workshop on Speech Production in Automatic Speech Recognition; 2013 Aug 30; Lyon, FR.
65. Javed A, Kim YC, Khoo MC, Ward SL, Nayak KS. Dynamic 3-D MR visualization and detection of upper airway obstruction during sleep using region-growing segmentation. IEEE Trans Biomed Eng 2016;63:431–7.
66. Xu C, Sin S, McDonough JM, Udupa JK, Guez A, Arens R, et al. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow. J Biomech 2006;39:2043–54.
67. Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J Biomech 2009;42:1553–9.
68. Lucey AD, King AJ, Tetlow GA, Wang J, Armstrong JJ, Leigh MS, et al. Measurement, reconstruction, and flowfield computation of the human pharynx with application to sleep apnea. IEEE Trans Biomed Eng 2010;57:2535–48.
70. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (UK): London MIT Press; 2016.
71. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira P, Burges CJC, Bottou L, editors. Advances in Neural Information Processing Systems 25 (NIPS 2012); 2012 Dec 3-6; Lake Tahoe, NV. Red Hook (NY): Curran Associates, Inc.; 2012. p. 1097–105.
72. Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 2016;35:1252–61.
74. Qi D, Hao C, Lequan Y, Lei Z, Jing Q, Defeng W, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016;35:1182–95.
75. Somandepalli K, Toutios A, Narayanan SS. Semantic edge detection for tracking vocal tract air-tissue boundaries in real-time magnetic resonance images. Proc Interspeech 2017;2017:631–5.
76. Valliappan CA, Mannem R, Ghosh PK. Air-tissue boundary segmentation in real-time magnetic resonance imaging video using semantic segmentation with fully convolutional networks. Proc Interspeech 2018;2018:3132–6.
77. Wu Z, Kim YC, Khoo MC, Nayak KS. Evaluation of an independent linear model for acoustic noise on a conventional MRI scanner and implications for acoustic noise reduction. Magn Reson Med 2014;71:1613–20.
78. Price DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging 2001;13:288–93.
79. Kavcic P, Koren A, Koritnik B, Fajdiga I, Groselj LD. Sleep magnetic resonance imaging with electroencephalogram in obstructive sleep apnea syndrome. Laryngoscope 2015;125:1485–90.
83. Inouye JM, Blemker SS, Inouye DI. Towards undistorted and noise-free speech in an MRI scanner: correlation subtraction followed by spectral noise gating. J Acoust Soc Am 2014;135:1019–22.
84. Traser L, Burdumy M, Richter B, Vicari M, Echternach M. The effect of supine and upright position on vocal tract configurations during singing: a comparative study in professional tenors. J Voice 2013;27:141–8.
85. Santos JM, Wright GA, Pauly JM. Flexible real-time magnetic resonance imaging framework. Conf Proc IEEE Eng Med Biol Soc 2004;2:1048–51.
87. Takemoto H, Kitamura T, Nishimoto H, Honda K. A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions. Acoust Sci Technol 2004;25:468–74.
88. Nunthayanon K, Honda E, Shimazaki K, Ohmori H, Inoue-Arai MS, Kurabayashi T, et al. Use of an advanced 3-T MRI movie to investigate articulation. Oral Surg Oral Med Oral Pathol Oral Radiol 2015;119:684–94.
92. Moon IJ, Han DH, Kim JW, Rhee CS, Sung MW, Park JW, et al. Sleep magnetic resonance imaging as a new diagnostic method in obstructive sleep apnea syndrome. Laryngoscope 2010;120:2546–54.
93. Donnelly LF, Surdulescu V, Chini BA, Casper KA, Poe SA, Amin RS. Upper airway motion depicted at cine MR imaging performed during sleep: comparison between young patients with and those without obstructive sleep apnea. Radiology 2003;227:239–45.
97. Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003;168:522–30.
100. Hsieh FY, Goldstein L, Byrd D, Narayanan S. Truncation of pharyngeal gesture in English diphthong [a]. In: Bimbot F, Cerisara C, Fougeron C, Gravier G, Lamel L, Pellegrino F, editors. 14th Annual Conference of the International Speech Communication Association (INTERSPEECH 2013); 2013 Aug 25-29; Lyon, FR. Red Hook (NY): Curran Associates, Inc.; 2013. p. 968–72.
101. Smith C, Proctor MI, Iskarous K, Goldstein L, Narayanan S. Stable articulatory tasks and their variable formation: tamil retroflex consonants. In: Bimbot F, Cerisara C, Fougeron C, Gravier G, Lamel L, Pellegrino F, editors. 14th Annual Conference of the International Speech Communication Association (INTERSPEECH 2013); 2013 Aug 25-29; Lyon, FR. Red Hook (NY): Curran Associates, Inc.; 2013. p. 2006–9.
104. Echternach M, Popeil L, Traser L, Wienhausen S, Richter B. Vocal tract shapes in different singing functions used in musical theater singing: a pilot study. J Voice 2014;28:653. e1-e7.
105. Beer AJ, Hellerhoff P, Zimmermann A, Mady K, Sader R, Rummeny EJ, et al. Dynamic near-real-time magnetic resonance imaging for analyzing the velopharyngeal closure in comparison with videofluoroscopy. J Magn Reson Imaging 2004;20:791–7.
106. Perry JL, Sutton BP, Kuehn DP, Gamage JK. Using MRI for assessing velopharyngeal structures and function. Cleft Palate Craniofac J 2014;51:476–85.
107. Anagnostara A, Stoeckli S, Weber OM, Kollias SS. Evaluation of the anatomical and functional properties of deglutition with various kinetic high-speed MRI sequences. J Magn Reson Imaging 2001;14:194–9.
109. Amin MR, Lazarus CL, Pai VM, Mulholland TP, Shepard T, Branski RC, et al. 3 Tesla turbo-FLASH magnetic resonance imaging of deglutition. Laryngoscope 2012;122:860–4.
110. Breyer T, Echternach M, Arndt S, Richter B, Speck O, Schumacher M, et al. Dynamic magnetic resonance imaging of swallowing and laryngeal motion using parallel imaging at 3 T. Magn Reson Imaging 2009;27:48–54.
111. Zhang S, Olthoff A, Frahm J. Real-time magnetic resonance imaging of normal swallowing. J Magn Reson Imaging 2012;35:1372–9.
112. Freitas AC, Ruthven M, Boubertakh R, Miquel ME. Real-time speech MRI: commercial Cartesian and non-Cartesian sequences at 3T and feasibility of offline TGV reconstruction to visualise velopharyngeal motion. Phys Med 2018;46:96–103.
114. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88.