1. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 2010;7:18–27.
2. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356:227–36.
4. Subashini TS, Ramalingam V, Palanivel S. Pectoral muscle removal and detection of masses in digital mammogram using CCL. Int J Comput Appl 2010;1:71–6.
5. van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 2011;261:719–32.
6. Vaidehi K, Subashini TS. Automatic identification and elimination of pectoral muscle in digital mammograms. Int J Comput Appl 2013;75:15–8.
8. Alam N, Islam MJ. Pectoral muscle elimination on mammogram using K-means clustering approach. Int J Comput Vis Signal Process 2014;4:11–21.
9. Mustra M, Grgic M. Robust automatic breast and pectoral muscle segmentation from scanned mammograms. Signal Process 2013;93:2817–27.
10. Molinara M, Marrocco C, Tortorella F. Automatic segmentation of the pectoral muscle in mediolateral oblique mammograms. Proceedings ofthe 26th IEEE International Symposium on Computer-Based Medical Systems; 2013 Jun 20-22; Porto, PT. Piscataway (NJ): IEEE; 2013. p. 506-9.
11. Kwok SM, Chandrasekhar R, Attikiouzel Y. Automatic pectoral muscle segmentation on mammograms by straight line estimation and cliff detection. The Seventh Australian and New Zealand Intelligent Information Systems Conference; 2001 Nov 18-21; Perth, AU. Piscataway (NJ): IEEE; 2002. p. 67-72.
12. Raba D, Oliver A, Marti J, Peracaula M, Espunya J. Breast segmentation with pectoral muscle suppression on digital mammograms. Lectu Notes Comput Sci 2005;3523:471–8.
13. Shen R, Yan K, Xiao F, Chang J, Jiang C, Zhou K. Automatic pectoral muscle region segmentation in mammograms using genetic algorithm and morphological selection. J DigitImaging 2018;31:680–91.
14. Gardezi SJS, Adjed F, Faye I, Kamel N, Eltoukhy MM. Segmentation of pectoral muscle using the adaptive gamma corrections. Multimed Tools Appl 2018;77:3919–40.
17. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10:257–73.
19. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 2015;8:2015–22.
20. Matheus BR, Schiabel H. Online mammographic images database for development and comparison of CAD schemes. J DigitImaging 2011;24:500–6.
23. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A. editors. International Conference on Medical Image Computing and Computer-assisted Intervention; 2015 Oct 5-9; Munich, DE. Cham (CH): Springer; 2015. p. 234-41.