Telomerase reverse transcriptase promoter mutation and its clinical implication in thyroid cancer

Jae Hoon Chung
Division of Endocrinology & Metabolism, Department of Medicine and Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Received: January 31, 2018
Revised: March 4, 2018
Accepted: March 9, 2018

Corresponding author:
Jae Hoon Chung
Division of Endocrinology & Metabolism, Department of Medicine and Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-3434
E-mail: thyroid@skku.edu

ABSTRACT

Considering the long-term survival in most patients with thyroid cancer, it is very important to distinguish patients who need aggressive treatment from those who do not. Clinicopathological prognostic factors have been used to predict their prognoses, but they could not completely predict the final outcome of each patient. Recently, molecular marker-based risk stratification of thyroid cancer has been proposed to better estimate the risk. BRAF mutation has drawn much attention based on its high prevalence. However, its association with recurrence/mortality is not clear, and it is debatable. Telomerase reverse transcriptase (TERT) promoter mutation has been identified in over 50 human cancers including thyroid cancer after its first discovery in melanoma. It increases telomerase activity, which allows cancer cells to immortalize. It was found in approximately 10% of papillary thyroid carcinoma, 17% of follicular thyroid carcinoma, and 40% of poorly differentiated or anaplastic thyroid carcinoma. It is highly prevalent in old age, large tumors, aggressive histology, advanced stages, and distant metastasis. It is associated with increased recurrence and mortality. Concomitant TERT and BRAF mutations diminished the survival rate. Inclusion of TERT promoter mutation analysis with conventional clinicopathological evaluation could lead to better prognostication and management for individual patients.

Keywords: BRAF mutation; Mortality; Recurrence; Telomerase reverse transcriptase promoter mutation; Thyroid neoplasms

INTRODUCTION

Thyroid cancer is the most common endocrine malignancy, and its incidence is on the rise in the world [1-4]. This is mainly due to the early detection of papillary thyroid carcinoma (PTC) less than 1 cm in diameter with a high-resolution ultrasonography (USG) [5,6]. However, the incidence of larger thyroid cancers is also increasing [1,2]. Many experts emphasized that its early detection cannot completely explain the observed increase in thyroid cancer [2,7]. Therefore, other possible explanations should be explored. The major contribution of genetic factors...
to the pathogenesis of thyroid cancer has been revealed [8]. The population living in East Asia, including Korea, has been reported to be genetically susceptible to thyroid cancer [9,10]. Extremely high iodine intake, increased exposure to medical radiation, and rising rates of obesity are also potential candidates to explain this phenomenon [11-16]. Jung et al. [17] reported the prediction of thyroid cancer incidence and mortality in Korea in 2017. A total of 23,862 new thyroid cancer cases (crude incidence 46.2/100,000, age-standardized incidence 33.8/100,000) and 360 cancer-specific deaths are expected to occur in Korea in 2017. Thyroid cancer is the fourth most common cancer after colorectum, stomach, and lung cancer in Korea.

PTC and follicular thyroid carcinoma (FTC) referred to as differentiated thyroid carcinoma (DTC). It accounts for more than 90% in all thyroid cancers, and it has a favorable prognosis [18,19]. However, patients with poorly-differentiated thyroid carcinoma (PDTC) or anaplastic thyroid carcinoma (ATC), and patients who present with advanced stage or distant metastasis have poor prognoses [20-25]. Considering the long-term survival in most patients with DTC, it is very important to distinguish patients who need aggressive treatment from those who do not. Precise identification of risk factors for high mortality can make an optimal therapeutic strategy in each patient. Clinicopathological prognostic factors, such as age, histological type, tumor size, local invasion, lymph node metastasis, and distant metastasis, have been used to predict their prognoses [26,27]. However, they could not completely predict the final outcome of each patient [28].

PROGRESS IN MOLECULAR MECHANISM OF THYROID CANCER

Molecular tests for genetic alterations and different gene expressions in thyroid cancer may enhance the diagnostic value of cytologic examination and predictability of clinical outcomes [29]. Molecular changes precede histological changes [30]. Gupta et al. [30] described heterogeneous histological changes in a tumor: (1) microfollicular areas with well-developed nuclear features of PTC, (2) areas composed of larger follicles with borderline nuclear features of PTC, and (3) areas with large follicles lacking nuclear features of PTC. When tested separately, all three areas were positive for the same NRAS61 mutation.

Most progress has been made in elucidating the molecular mechanisms involved in the pathogenesis of thyroid cancer after the detection of RAS mutation and RET/PTC rearrangement. Newly identified oncogenes have provided the basic information upon which new diagnostic tools and new prognostic markers, as well as new targeted agents, have been developed. The Cancer Genome Atlas (TCGA) study presented integrated genomic characterization of PTC in 2014 [31]. It described the low frequency of somatic alterations in 496 PTCs compared to other cancers. It reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Genetic alterations in thyroid cancer included point mutations (75%), gene fusions (15%), and copy number variations (7%). In patients with an advanced stage, tumors may have more than one mutation; therefore, the overall mutation burden exceeds 100%. The frequency of the main drivers (BRAF, RAS, and RET) sums to less than 100% because in some cases the drivers are not known or they are lower frequency events [32].

RAS genes (HRRAS, KRAS, and NRAS) are G proteins that signal to both the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K)/AKT pathways. RAS mutations typically occur in codons 12, 13, and 61, and are found in 20% to 40% of follicular adenoma, 40% to 50% of FTC, and in 10% to 20% of follicular variant PTC [33-36]. In contrast, mutations in HRAS and KRAS also occur in medullary thyroid cancer (MTC) [37]. The RET gene is a receptor tyrosine kinase that is expressed in parafollicular C cells, but not in follicular cells. The RET proto-oncogene in PTC is activated by chromosomal rearrangement. It is rearranged by the fusion of the tyrosine kinase domain of RET gene and the 5’ end sequence of a non-oncogenic gene, which is expressed in follicular cells [38,39]. An intrachromosomal rearrangement generates the chimeric oncogene, which has been designated as RET/PTC. The most common types are RET/PTC1 (formed by fusion of RET with the CCDC6 [coiled-coil domain-containing protein 6] gene) and RET/PTC3 (formed by fusion of RET with the NCOA4 [nuclear receptor coactivator 4] gene) [38,39]. RET/PTC rearrangements are highly prevalent in children, young adults, and patients with a history of radiation exposure [40]. In addition, the RET gene mutation is commonly found in MTC [41-43]. Germine mutations of the RET proto-oncogene in hereditary MTC were identified in 1993 and 1994 [41-43]. Mutation analysis of the RET proto-oncogene has been established as a screening procedure, and every patient with MTC, as well as family members of RET-positive patients with MTC, should undergo mutation analysis [44]. Recently, genotype-phenotype correlations of hereditary MTC have been reported.
Mutations of the \textit{BRAF} gene were first identified in human cancer in 2002 [45]. Thereafter, more than 40 mutations of the \textit{BRAF} gene have been discovered. Most cases activating the \textit{BRAF} mutation involve codon 600 and result in the V600E mutation, and a few cases of other \textit{BRAF} mutations occur as K601E mutation, small in-frame insertions, deletions, or rearrangement [46,47]. The mutations of the \textit{BRAF} gene were frequently detected in thyroid cancer [47-52]. The thymine-to-adenine transversion at nucleotide position 1799 in exon 15 of the \textit{BRAF} gene results in a valine-to-glutamate substitution at residue 600, which leads to constitutive activation of MAPK signaling downstream [51,53]. The prevalence of the \textit{BRAF} V600E mutation in PTC ranges from 30% to 80%, depending on the iodine status and geographic location [54-56]. The \textit{BRAF} V600E mutation is known to be highly specific to PTC [57]. In Korea, approximately 97% of newly diagnosed thyroid cancer is PTC and 80% of PTC cases harbor the \textit{BRAF} V600E mutation. Therefore, molecular testing for the \textit{BRAF} V600E mutation in cytologic specimen increases diagnostic sensitivity and accuracy in a \textit{BRAF} V600E mutation-prevalent population [58,59]. Most studies have demonstrated that the \textit{BRAF} mutation is significantly associated with one or more high-risk clinicopathological characteristics of PTC, such as extrathyroidal extension, lymph node metastasis, and advanced stages [50,60-62].

The \textit{PAX8} (paired-box gene 8)/peroxisome proliferator-activated receptor \textit{γ} (PPAR\textit{γ}) rearrangement, a fusion between a paired domain transcription factor and the \textit{PPAR} genes, is found in 30% to 40% of FTC, and infrequently in the follicular adenoma or follicular variant PTC [63-65]. Mutations in \textit{TP53} (tumor protein p53) are frequently detected in ATC. Mutations of \textit{EIF1AX} (eukaryotic translation initiation factor 1A, X-linked), a component of the translation preinitiation complex, are infrequent and are mutually exclusive with other driver mutations in PTC [66].

THE SIGNALING PATHWAYS INVOLVED IN THYROID CARCINOGENESIS

The main signaling pathways involved in thyroid carcinogenesis are the MAPK and PI3K/AKT pathways. They regulate multiple cell processes including proliferation, differentiation, and survival. The MAPK pathway is frequently activated in thyroid cancer through the \textit{BRAF} mutation, \textit{RAS} mutation, and the \textit{RET}/\textit{PTC} rearrangement [47,51]. It is a common initiating event in DTC. Mutations involving the PI3K/AKT pathway are found more frequently in FTC and dedifferentiated types of thyroid carcinoma. ATC has mutations in gene encoding components of the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway and of the proteins involved in epigenetic regulation, whereas PDTC has an intermediate frequency of these events.

MOLECULAR MARKER-BASED RISK STRATIFICATION OF THYROID CANCER

Molecular marker-based risk stratification of thyroid cancer has been recently proposed for estimation of risk [67]. The \textit{BRAF} mutation has drawn much attention based on its high prevalence, occurring in about 30% to 80% of PTC and 25% of ATC cases [54-56,61,68]. In 2012, Tufano et al. [69] published a meta-analysis from 14 studies including 2,470 PTC patients. They demonstrated that the \textit{BRAF} mutation in PTC was significantly associated with PTC recurrence, lymph node metastasis, extrathyroidal extension, and advanced stages. In 2013, Xing et al. [70] reported the association of the \textit{BRAF} mutation with mortality in a large multicenter study of 1,849 PTC patients. They demonstrated that the \textit{BRAF} mutation was associated with an increased cancer-related mortality, but it was no longer significant after the adjustment of risk factors, such as lymph node metastasis, extrathyroidal invasion, and distant metastasis. However, many studies from Korea, Taiwan, and Japan demonstrated that the \textit{BRAF} mutation was not associated with disease-free survival as well as poor prognostic factors [71-73]. In addition, many physicians wonder why thyroid cancer-related mortality is still low, although the \textit{BRAF} mutation is highly prevalent. These findings suggest that the \textit{BRAF} mutation taken in isolation may be a relatively sensitive, but not a specific marker of tumor recurrence and tumor-related mortality. Recently, more specific markers predictive of aggressive behavior have emerged. In patients with an advanced stage, tumors may have more than one mutation. Next generation sequencing-based analysis revealed that some PTCs have more than one mutation, and these have aggressive behavior [74].

TELOMERASE REVERSE TRANSCRIPTASE PROMOTER MUTATION IN THYROID CANCER

Telomeres and telomerase

Telomeres are located at the ends of linear chromosomes. They are composed of hundreds to thousands of tandem DNA repeat sequences: hexameric TTAGGG in the leading strand and CCCTAA in the lagging strand in humans. They were coated by protective proteins termed ‘shelterin.’ The 3’
end of the telomeric leading strand terminates as a single-stranded overhang, which folds back and invades the double-stranded telomeric helix, forming the T loop. Telomeres can be directly visualized under the microscope at the ends of metaphase chromosomes by fluorescence in situ hybridization (FISH). The average telomere length can be measured by several methods: a technique that combines flow cytometry and FISH (Flow-FISH), Southern blotting, and a quantitative polymerase chain reaction assay. The average length of telomeres in human leukocytes varies, ranging from approximately 11 kb at birth (in umbilical-cord blood) to 6 kb at 90 years of age. Telomere loss is most rapid early in life, and over a lifespan, it is not linear but follows a third-order polynomial [75]. The normal cell will divide between 50 to 70 times before cell death (Hayflick limit). As the cell divides, the telomeres get smaller. Because of the telomeres shortening through each division, the telomeres will eventually no longer be present on the chromosome. The cells finally become senescent and cell division stops. Shortened telomeres impair immune functions that might also increase cancer susceptibility [76]. Therefore, telomere shortening can be related to the risk of cancer.

Telomerase is a reverse transcriptase that utilizes an RNA template to add telomeric repeats to the 3′ ends of chromosomes. Telomerase consists of some molecules each of telomerase reverse transcriptase (TERT), telomerase RNA, and dyskerin. It protects the telomere repeats from erosion, such as DNA damage or fusion with neighboring chromosomes. Therefore, it reverses telomere shortening. Telomerase is not expressed in most normal cells, but it is frequently activated in most cancer cells as well as normal stem cells [77,78].

TERT promoter mutation in cancer

Cancer cells are immortal because activated telomerase allows them to survive much longer than normal cells. Therefore, the maintenance of telomere length is very important for immortalization of cancer cells. In 2013, the point mutations of TERT promoter were first found in melanoma, and these somatic mutations enhanced promoter activity by two- to four-fold, which could immortalize cancer cells by maintaining telomere length [79-81]. Somatic mutations in the TERT promoter have been identified in over 50 human cancers, including thyroid cancer [82]. TERT promoter mutation has been shown to increase telomerase activity, which protects the telomere repeats from erosion and maintains the telomere length. Two mutations in the TERT promoter (chr5:1295228C>T, termed C228T, and chr5:1295250C>T, termed C250T) were discovered in melanoma [79,80].

TERT promoter mutation in thyroid cancer

The C228T and C250T TERT promoter mutations were detected in follicular cell-derived thyroid cancer, but they were absent in benign lesions and MTC [82-86]. These two TERT promoter mutations occurred in a mutually exclusive manner. C228T is far more dominant than C250T. The mutual exclusivity of the two TERT promoter mutations suggests that either may function sufficiently to play an important role in thyroid tumorigenesis although which one is more powerful oncogenically has not been established at this time [87]. In meta-analysis, TERT promoter mutation was found in approximately 10% of PTC, 17% of FTC, and 40% of PDTC/ATC [88,89]. Among PTC, it was more prevalent in tall cell variants than conventional or follicular variants. The TERT promoter mutation has a significantly higher prevalence in old age, large tumors, aggressive histology, advanced stages, and distant metastasis [88,89]. Why is it more prevalent in old age? A normal thyroid epithelial cell from young age is telomerase proficient with a longer telomere, whereas that from an old age is telomerase deficient with a shorter telomere. When it is attacked by oncogenic events, it undergoes active proliferation with further erosion of its telomere. In that case, telomere dysfunction or even telomere crisis occurs in old age because of its initial shorter telomere and lack of telomerase activity. Telomere crisis triggers both genomic instability and telomerase activation: TERT promoter mutation is thus the consequence of genomic instability, whereas in turn, it contributes to derepressing TERT transcription and telomerase activation [85]. TERT promoter mutation has not been found in childhood thyroid cancer, except for one case in Saudi Arabia [90-93]. BRAF mutation has been known to be associated with iodine intake, but TERT promoter mutation is not [94]. In a multivariate comparison between the PTC with and without anaplastic transformation, TERT promoter mutation was independently associated with anaplastic transformation [95]. Collectively, PTC-derived anaplastic carcinomas are characterized by BRAF and TERT promoter mutations, and these mutations occur prior to anaplastic transformation. Of note, a PTC harboring TERT promoter mutation is at higher risk for anaplastic transformation. Interestingly, TERT mutations in some studies were found to be more common in tumors with a BRAFV600E mutation, which may suggest a possible synergistic interplay between MAPK pathway activation and telomerase activation to promote aggressive tumor behavior [83,84]. TERT promoter mutation, as well as BRAF mu-
TERT promoter mutation alone [97,98]. The genotype of
BRAF mutation alone, and PTC with both BRAF and TERT
mutations were associated with increased tumor aggressiveness and had the
worst prognosis in comparison with PTCs harboring BRAF or
TERT promoter mutation alone [97,98]. The genotype of pri-
mary tumors has a high concordance with the genotype of
lymph node metastasis. Distant metastases show an enrich-
ment of TERT promoter mutations and a decrease in BRAF
mutations. Therefore, TERT promoter mutations may play a
role in distant metastases [99]. The TERT promoter mutation is also associated with increased mortality in PTC, as well as other thyroid cancers. Liu et al. [100] reported that PTC with
concurrent BRAF and TERT promoter mutations were associ-
ated with increased cancer-specific mortality in comparison
with PTCs harboring BRAF or TERT promoter mutation alone
(TERT/BRAF 22.7% vs. TERT 6.3% vs. BRAF 2.4% vs. wild type
0.6%). Kim et al. [89] evaluated the association of a TERT pro-
motor mutation with the survival of 409 thyroid cancer pa-
tients followed for a median of 13 years. They reported that
the TERT promoter mutation was independently associated
with poorer overall survival in patients with DTC (10-year sur-
vival rate, 66.2% vs. 98.3% for wild type) and in patients with
PTC (74.2% vs. 99.3%). Concomitant TERT and BRAF muta-
tions diminished the survival rate of patients with PTC.

Clinical implication of TERT promoter mutation in
thyroid cancer

Hahn et al. [98] and Kim et al. [101] investigated the associa-
tion of BRAF and TERT promoter mutations with USG find-
ings. They reported that PTC with no mutation, PTC with
BRAF mutation alone, and PTC with both BRAF and TERT
promoter mutations increased linearly in the probability of
displaying malignant USG features [98]. They, also, reported
that PTC with TERT promoter mutation could be suggested
by the USG findings of nonparallel orientation and microlob-
ulated margin, especially in patients older than 50 years
[101].

Wang et al. [102] reported an interesting observation in
2014. They identified a TERT promoter mutation (C228T) in 1
out of 58 follicular adenoma postoperatively. The patient
with the C228T mutated follicular adenoma later developed
a scar recurrence and died of FTC, whereas none of the re-
mainning 57 patients with follicular adenoma had a recur-
rence. Therefore, they concluded that TERT promoter muta-
tions might occur as an early genetic event in thyroid follicu-
lar tumors that have not developed malignant features on
routine histopathological workup. According to this finding,
physicians should make aggressive therapeutic strategies in
patients with a TERT promoter mutation. At least, a total thy-
roidectomy should be conducted in patients with a TERT
promoter mutation, even though they were diagnosed with
follicular neoplasm by cytologic examination.

Xu et al. [103] also reported an interesting finding in 2017.
They observed 15 cases with low-risk histology with distant
metastases at present. The majority were encapsulated fol-
licular variants of PTC with capsular invasion only. Among
eight tumors that were subjected to next-generation se-
quencing analysis, TERT promoter mutation was highly prev-
alent. TERT promoter mutations occurred at a higher rate
than that seen in PTC in general and may help explain the
aggressive behavior. DTC with low-risk histologic features
and distant metastasis was a rare occurrence, accounting for
less than 3% of metastatic non-ATC. When finding DTC cases
with low-risk histology together with distant metastasis, dis-
tant metastasis is almost always found at present. These tu-
mors might have a high probability to have TERT promoter
mutations.

In 2015, the American Thyroid Association introduced new
therapeutic guidelines for DTC and included the reclas-
cification of cancer recurrence risk after initial treatment [104].
The new dynamic risk stratification (DRS) system can predict
the structural recurrence with higher accuracy than a tradi-
tional predictive system based on clinicopathologic informa-
tion [105]. Kim et al. [106] aimed to refine the risk prediction
for structural recurrence and cancer-specific mortality using
the TERT promoter mutation in 357 DTC patients without ini-
tial distant metastasis with long-term follow-up (median, 14
years). They developed an integrative prognostic system that
incorporates TERT promoter mutation into the recently pro-
posed DRS system after initial therapy to better categorize
and predict outcomes. Cox regression was used to calculate
adjusted hazard ratios (AHRs) to derive AHR groups. Patients
in higher AHR groups were significantly at higher risk of re-
currence and cancer-related death. The proportion of vari-
ance explained (PVE) of the AHR system to predict recurrence
was higher than the DRS system (22.4% vs. 18.5%). PVE of
the AHR system to predict cancer-related death was also
higher than the TNM (tumor, node, metastasis) system
(11.5% vs. 7.4%). They concluded that the inclusion of TERT
promoter mutation analysis with conventional clinicopatho-
logical evaluation could lead to better prognostication and
management for individual patients.

CONCLUSION

Considering the long-term survival in most patients with thyroid cancer, it is very important to distinguish patients who need aggressive treatment from those who do not. Conventional clinicopathological prognostic factors could not completely predict the final outcome of each patient. Although the BRAF mutation has drawn much attention, there are limitations to predict the clinical outcome of each patient. TERT promoter mutation has been found in 10% to 20% of DTC and 40% of dedifferentiated thyroid cancer. Although it is highly prevalent in old age, large tumors, aggressive histology, advanced stages, and distant metastasis, it is strongly associated with tumor recurrence and mortality in thyroid cancer. Therefore, the inclusion of TERT promoter mutation analysis with conventional clinicopathological evaluation could lead to better prognostication and management for individual patients.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ORCID

Jae Hoon Chung https://orcid.org/0000-0002-9563-5046

REFERENCES

18. Mazzaferri EL, Jhiang SM. Long-term impact of initial

rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:3947-52.
23.